Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production
نویسندگان
چکیده
Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.
منابع مشابه
Recent Advances in the Recombinant Biosynthesis of Polyphenols
Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their producti...
متن کاملPlant cells technology as an effective biotechnological approach for high scale production of pharmaceutical natural compounds; A meta-analysis study
Natural-based drugs are the important bioactive substances that have been used for prevention and treatment of diseases. Natural products should be prepared in commercial scale from relevant medicinal plants. Hence, large amounts of the plants have been needed for extraction and isolation of compounds of natural origin. Plant cells technology is the best strategy for the production of the plant...
متن کاملSimulation of Bioreactors for PHB Production from Natural Gas
Recently, many economic studies of poly(3-hydroxybutyrate) PHB production on an industrial scale, and the impact of replacing petrochemical polymers by PHB were carried out, clearly indicating that the most crucial factors to reduce the cost of producing biopolymers are allotted to the application of microbial production strains capable of high productivi...
متن کاملModeling the Trade-off between Manufacturing Cell Design and Supply Chain Design
Nowadays, we are witnessing the growth of firms that distribute the production capacity of their products to a wide geographic range to supply the demand of several markets. In this article, the relationships and interactions between cell design and supply chain design are investigated. For this purpose, a novel integrated model is presented for designing dynamic cellular manufacturing systems ...
متن کاملMathematical model for dynamic cell formation in fast fashion apparel manufacturing stage
This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017